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OxDNA is a coarse-grained model of DNA at the nucleotide level that has been parameterized to reproduce the
structural, mechanical and thermodynamic properties of DNA [1]. The code that we use to simulate the model
(including both molecular dynamics and Monte Carlo) is publicly available [2] and the model has also been
incorporated into LAMMPS [3]. The model has been used to explore a wide range of biophysical properties of
DNA and many DNA nanotechnology systems. In this talk I will review some of the recent applications of
oxDNA to DNA nanotechnology.   This  will  include characterizing the basic  structural  properties  of  DNA
origami [4], and example applications to more complex origami, including those with flexible components [5]
and  internal  stresses.  The  model  can  also  be  used  to  characterize  the  mechanical  properties  of  DNA
nanostructures, both in the elastic regime and their modes of failure under tension [6]. The model is also able to
provide insights into the self-assembly dynamics of DNA nanostructures from the complete assembly of small
DNA tetrahedra to the details of staple binding in origami [7] and even the oligomerization of DNA origami
(see Figure 1). Combined with classical density functional theory, oxDNA has also been used to predict the
cholesteric liquid-crystalline properties of chiral elongated DNA origami [8]. 

Figure 1: An oxDNA representation of a 5-mer of a DNA origami designed by the group of Lawrence Lee to 
undergo self-limited oligomerization due to the build-up of stress.
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